Un gruppo di geni coinvolti nell’invecchiamento del cervello correlato all’età è stato identificato dal team di ricerca del Dipartimento di Biologia e biotecnologie "C. Darwin" della Sapienza, in collaborazione con il Babraham Institute di Cambridge. I risultati dello studio, pubblicato sulla rivista Aging Cell, mostrano che uno di questi geni, denominato Dbx2, può determinare un invecchiamento precoce delle cellule staminali neurali, riducendone la capacità di crescita. Le cellule staminali neurali sono responsabili della produzione di nuovi neuroni nel cervello adulto. Con l'età, le cellule staminali producono sempre meno cellule nervose e ciò può causare un deterioramento delle capacità cognitive del cervello. Il team di ricerca internazionale ha confrontato l’attività genica delle staminali neurali di topi vecchi e giovani, identificando 254 geni la cui attività si altera nelle cellule vecchie. E’ stato osservato che, mentre per molti di questi geni l’attività si riduce, per il gene Dbx2 aumenta.
Identificati geni coinvolti nell’invecchiamento del cervello
Dimmi come giochi e ti dirò chi sei
Sulla rivista PlosOne un studio sulle modalità ludiche di gorilla e scimpanzé realizzato da un team di etologi delle Università di Pisa e Torino
Dimmi come giochi e ti dirò chi sei e, soprattutto, come stai con gli altri. Il gioco è infatti una cartina di tornasole fondamentale per comprendere la qualità delle relazioni che legano gli individui fra loro. A svelare i risvolti sociali dei comportamenti ludici arriva una nuova ricerca di un team di etologi delle Università di Pisa e Torino appena pubblicata sulla rivista PlosOne. Giada Cordoni, Ivan Norscia, Maria Bobbio ed Elisabetta Palagi hanno studiato come giocano scimpanzé e gorilla, due specie che condividono con noi il 98-99% del DNA e che rappresentano un ottimo modello per capire qualcosa di più anche sull’evoluzione del nostro comportamento. La fase sperimentale del lavoro si è svolta in Francia, nello ZooParc de Beauval a St. Aignan sur Cher, dove i ricercatori per tre mesi hanno osservato le colonie di 15 scimpanzé e 11 gorilla e stilando dei report giornalieri.
“Abbiamo messo in relazione il gioco con la propensione a costruire rapporti attraverso comportamenti di affiliazione e supporto – racconta Elisabetta Palagi del Museo di Storia Naturale dell’Università di Pisa - quello che è emerso è che gorilla e scimpanzé sono profondamente diversi per l’organizzazione sociale e il modo di creare amicizie e alleanze”.
Quando la luce diventa liquida
Dettaglio del setup sperimentale del laboratorio di fotonica avanzata nel centro Nanotec-Cnr di Lecce. A destra, progressiva formazione ed estensione della fase ordinata di un condensato di luce.
Una ricerca condotta dai ricercatori dell’Istituto di nanotecnologia del Cnr rivela la formazione spontanea di ordine topologico in un sistema fotonico. In pratica, le interazioni sono in grado di 'sintonizzare' spontaneamente i fotoni fra loro, neutralizzando la dissipazione energetica. Il lavoro, pubblicato su Nature Materials, contribuisce all’espansione del moderno campo di ricerca in fluidi quantistici di luce
Uno studio condotto recentemente dall’Istituto di nanotecnologia del Consiglio nazionale delle ricerche (Nanotec-Cnr) di Lecce rivela che i fotoni, ovvero particelle di luce, si possono ‘sintonizzare’ spontaneamente fra loro, quando l’interazione è sufficientemente forte, formando ordine là dove non ce ne dovrebbe essere. Questo significa che uno dei risultati più importanti della fisica del secolo scorso, ovvero la scoperta di un ordine ‘topologico’ della materia, premiato dal Nobel 2016, viene esteso a sistemi fatti di luce e potrebbe diventare la base per future tecnologie. I risultati sono pubblicati sulla rivista Nature Materials.
“La meccanica statistica pone condizioni precise affinché queste ‘transizioni di fase’ possano essere osservate in natura. Una transizione di fase avviene quando, al variare di un parametro (di solito la temperatura) cambiano improvvisamente le relazioni fra i costituenti elementari di un sistema”, spiega Daniele Sanvitto, coordinatore del gruppo di fotonica avanzata del Nanotec-Cnr di Lecce. “Per esempio, nel passaggio da una fase più ordinata (liquido) ad una più disordinata (gassoso), oppure nell’emergere di un ordine reticolare nei cristalli o nell’allineamento dei campi magnetici microscopici in un ferromagnete. Ciò è vero anche a livello quantistico: in un condensato di Bose-Einstein, ogni atomo diventa indistinguibile dagli altri al di sotto di una certa temperatura. Ma le transizioni di fase dipendono fortemente dalla dimensionalità del sistema e in sistemi bidimensionali, ovvero confinati in uno spazio a sole due dimensioni, le fasi ordinate sono instabili anche a temperature molto basse favorendo la formazione di strutture disordinate. In questi sistemi esiste però una fase particolare chiamata ‘ordine topologico’, in cui le irregolarità di segno opposto si neutralizzano a vicenda, simmetricamente, e rimangono localizzate in punti spaziali relativamente piccoli, annullando gli effetti a lunga distanza”.