Novembre 2020



In a recent study, a research group led by Christian Gruber at MedUni Vienna's Institute of Pharmacology isolated a peptide (small protein molecule) from beetroot. The peptide is able to inhibit a particular enzyme that is responsible for the breakdown of messenger molecules in the body. Due to its particularly stable molecular structure and pharmacological properties, the beetroot peptide may be a good candidate for development of a drug to treat certain inflammatory diseases, such as e.g. neurodegenerative and autoimmune diseases.

The peptide that occurs in the roots of beetroot plants belongs to a group of molecules that plants use inter alia as a chemical defence against pests such as e.g. bacteria, viruses or insects. "By analysing thousands of genomic data, our team was able to define a number of new cysteine-rich peptides and assign them phylogenetically in the plant kingdom. In this process, our attention was drawn to a possible function as so-called 'protease inhibitors'. The beetroot peptide can therefore inhibit enzymes that digest proteins," explains Gruber.

Pubblicato in Scienceonline

Neuronal fibres in a healthy brain (left) and a brain with agenesis of the corpus callosum (right). In the healthy brain, the two hemispheres are connected by the corpus callosum fibers, shown in red. These fibres are absent in the brain with corpus callosum agenesis.



One in 4,000 people is born without a corpus callosum, a brain structure consisting of neural fibres that are used to transfer information from one hemisphere to the other. A quarter of these individuals do not have any symptoms, while the remainder either have low intelligence quotients or suffer from severe cognitive disorders. In a study published in the journal Cerebral Cortex, neuroscientists from the University of Geneva (UNIGE) discovered that when the neuronal fibres that act as a bridge between the hemispheres are missing, the brain reorganises itself and creates an impressive number of connections inside each hemisphere. These create more intra-hemispheric connections than in a healthy brain, indicating that plasticity mechanisms are involved. It is thought that these mechanisms enable the brain to compensate for the losses by recreating connections to other brain regions using alternative neural pathways.

Pubblicato in Scienceonline



La scoperta apre la strada per un potenziale trattamento antivirale che colpisce un meccanismo di entrata del virus nelle cellule  

Un team di scienziati internazionali, guidati dall’Università di Bristol, ha fatto una scoperta rivoluzionaria che potrebbe aver identificato che cosa rende il virus SARS-CoV-2 così infettivo e capace di diffondersi rapidamente nelle cellule umane. La scoperta, pubblicata su Science martedì 20 ottobre, dimostra che l’abilità del virus di infettare le cellule umane si può ridurre utilizzando degli inibitori che bloccano l’interazione tra il virus e una nuova proteina sulle nostre cellule. Questa osservazione potrebbe portare allo sviluppo di nuovi trattamenti antivirali. 

A differenza di altri coronavirus, che causano raffreddore e lievi sintomi respiratori, SARS-CoV-2, che è l’agente causativo del COVID-19, è altamente infettivo e trasmissibile. Finora, una delle domande rimaste ancora senza risposta riguarda il perché questo virus sia capace di infettare facilmente organi che risiedono fuori dal sistema respiratorio, per esempio cuore e cervello. 

Per infettare gli esseri umani, il SARS-CoV-2 deve prima di tutto attaccarsi alla superficie delle cellule che ricoprono il tratto respiratorio o intestinale. Una volta adeso, il virus invade le cellule e si replica al loro interno generando un gran numero di copie di se stesso. Le copie del virus sono poi rilasciate dalle cellule e questo processo sostiene la trasmissione del virus. 

Pubblicato in Medicina



In a study recently published in the top journal "Allergy", a team of MedUni Vienna scientists led by immunologist Winfried F. Pickl and allergologist Rudolf Valenta (both from the Center for Pathophysiology, Infectiology and Immunology) showed that there are seven "forms of disease" in COVID-19 with mild disease course and that the disease leaves behind significant changes in the immune system, even after 10 weeks. These findings could play a significant role in the treatment of patients and in the development of a potent vaccine.

In the study involving 109 convalescents and 98 healthy individuals in the control group, the researchers were able to show that various symptoms related to COVID-19 occur in symptom groups. They identified seven groups of symptoms: 1) "flu-like symptoms" (with fever, chills, fatigue and cough), 2) ("common cold-like symptoms" (with rhinitis, sneezing, dry throat and nasal congestion), 3) "joint and muscle pain", 4) "eye and mucosal inflammation", 5) "lung problems" (with pneumonia and shortness of breath), 6) "gastrointestinal problems" (including diarrhoea, nausea and headache) and 7) "loss of sense of smell and taste and other symptoms".

Pubblicato in Scienceonline
Pagina 9 di 9

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery