Artificial sensation through stimulation
Synaptic plasticity is responsible for the storing of memories in the memory structures of the brain: During that process the communication between neurons is altered by means of a process called synaptic plasticity, so that a memory is created. Strauch and Manahan-Vaughan examined if the piriform cortex of rats is capable of expressing synaptic plasticity and if this change lasts for more than four hours; indicating that long-term memory may have been established. The scientists used electrical impulses in the brain to emulate processes that trigger the encoding of an olfactory sensation as a memory. They used different stimulation protocols which varied in the frequency and intensity of the pulses. It is known that these protocols can induce long-term effects in another brain area that is responsible for long term memories: the hippocampus. Strikingly, the same protocols did not induce long-term information storage in the form of synaptic plasticity in the piriform cortex.
Signal from a higher brain area needed
The scientists wondered whether the piriform cortex needs to be instructed to create a long-term memory. They then stimulated a higher brain area called the orbitofrontal cortex, which is responsible for the discrimination of sensory experiences. This time the stimulation of the brain area generated the desired change in the piriform cortex. “Our study shows that the piriform cortex is indeed able to serve as an archive for long-term memories. But it needs instruction from the orbitofrontal cortex – a higher brain area – indicating that an event is to be stored as a long-term memory,” says Strauch.