Targeted therapy as a possible alternative to antibiotics
In order to investigate the RMS in more detail, the researchers used an innovative method in which they modified and analyzed the DNA of Borrelia bacteria. They discovered that the methylation of DNA, a process in which small molecules are bound to the bacteria’s own DNA, plays an important role in protecting the bacteria against foreign DNA. Further experiments showed that the ability of bacteria to take up new genetic material stably can be significantly improved by pre-methylating DNA molecules to mimic the Borrelia’s own DNA. This provides a tool to investigate how borrelia sustains itself within a host such as a human and a possible, previously unknown approach for researching and developing new therapies against Lyme borreliosis that are not based on antibiotics. The researchers are considering phage therapy, in particular, as an alternative treatment method. This involves using so-called bacteriophages, i.e. viruses that attack bacteria, to combat the pathogens specifically. "With further research, this method has the potential to pave the way towards reducing our reliance on antibiotics and preventing the development of antibiotic resistance," says Wijnveld.
Lyme borreliosis is the most common tick-borne disease in Europe. Borrelia bacteria are transmitted to humans when infected ticks bite. Recent studies from the same research group at MedUni Vienna have shown that every fourth tick is carrying Borrelia in Austria. Treatment with antibiotics is best started as soon as possible after diagnosis of Lyme borreliosis. If the bacterial infection is not recognized in time, it can lead to serious complications such as heart and joint inflammation, neurological complications and persisting symptoms after treatment. There is currently no vaccination against Lyme borreliosis. Contrary to the still widespread opinion, a vaccination against TBE does not protect against Lyme borreliosis.