Articoli filtrati per data: Martedì, 24 Gennaio 2017

 

More than 100 billion micrometeorites (MMs) fall to Earth each year. Until now, scientists believed that these particles could only be found in the cleanest environments, such as the Antarctic. In their new paper for Geology, M.J. Genge and colleagues show that, contrary to that expectation, micrometeorites can be recovered from city rooftops (for this example, primarily in Norway) and that, unlike those from the Antarctic, they are the youngest collected to date.

Pubblicato in Scienceonline

More than 100 billion micrometeorites (MMs) fall to Earth each year. Until now, scientists believed that these particles could only be found in the cleanest environments, such as the Antarctic. In their new paper for Geology, M.J. Genge and colleagues show that, contrary to that expectation, micrometeorites can be recovered from city rooftops (for this example, primarily in Norway) and that, unlike those from the Antarctic, they are the youngest collected to date.

Pubblicato in Scienceonline

More than 100 billion micrometeorites (MMs) fall to Earth each year. Until now, scientists believed that these particles could only be found in the cleanest environments, such as the Antarctic. In their new paper for Geology, M.J. Genge and colleagues show that, contrary to that expectation, micrometeorites can be recovered from city rooftops (for this example, primarily in Norway) and that, unlike those from the Antarctic, they are the youngest collected to date.

 

Pubblicato in Scienceonline

 

 

 

A Hokkaido University researcher has successfully developed a method to accurately manipulate gene expression by light illumination and demonstrated its usability by creating double-headed zebrafish.

It has been difficult to freely manipulate the timing and duration of gene expression using existing gene manipulation technologies, which depend on organism’s gene regulating mechanism. In recent years, methods using light to regulate gene expression have been developed, but deemed insufficient to manipulate embryonic development. This is due to a time lag of several hours that occurs from light irradiation to the start/cessation of protein production. Existing photocontrol technologies also require genetic modification, a process that is not only time-consuming but also strictly regulated by the Cartagena Protocol.

Pubblicato in Scienceonline

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery