“Sebbene le forme 2D dei nitruri non siano stabili in condizioni ordinarie, abbiamo dimostrato che è possibile ottenere strati ultrasottili e molto estesi sfruttando l’intercalazione di atomi di gallio (oppure di alluminio o indio) e di azoto fra il grafene ed il SiC”, spiega Filippo Giannazzo, ricercatore del Cnr-Imm che coordina l’attività di ricerca finalizzata all’integrazione dei materiali 2D con il SiC ed il GaN.
Il lavoro del team catanese ha consentito, grazie all’impiego di tecniche avanzate di microscopia sia a forza atomica conduttiva (CAFM) che elettronica (TEM), di comprendere le proprietà di questi materiali bidimensionali innovativi. “Per conoscere in profondità le caratteristiche strutturali e chimiche di tali sistemi a livello dei singoli strati atomici”, spiega Giuseppe Nicotra, ricercatore del Cnr-Imm che ha eseguito le indagini al TEM, “ci si è avvalsi delle competenze nell’analisi dei materiali 2D mediante microscopia elettronica presenti presso il laboratorio BeyondNano del CNR. La struttura è dotata di un microscopio elettronico di ultima generazione con incredibili capacità risolutive, con il quale è stato possibile comprendere in dettaglio le posizioni e i legami chimici degli atomi negli strati di nitruri intercalati”. Questi esperimenti sono stati supportati dal progetto ESTEEM3 che rende possibile l’accesso alle più potenti tecniche di caratterizzazione di microscopia elettronica presenti in Europa, e di cui BeyondNano è membro.
“La dimostrazione di queste nuove forme 2D dei nitruri”, conclude Giannazzo, “potrà consentire la realizzazione di nuovi transistor ultra-veloci ed energeticamente efficienti, in grado di operare a frequenze dai 100 GHz al THz, ovvero capaci di aprire nuove frontiere nelle telecomunicazioni oltre la tecnologia 5G, nella diagnostica medica e per la sicurezza”.