“Ad oggi la mancanza di strumenti capaci di analizzare grandi volumi ad alta risoluzione limita lo studio della struttura del cervello a un livello grossolano”, spiega Ludovico Silvestri, primo autore dello studio e ricercatore di Fisica della materia dell'Ateneo fiorentino. “L'attuale metodologia della microscopia a foglio di luce, accoppiata a protocolli chimici capaci di rendere trasparenti i tessuti biologici, non riesce a mantenere un’alta risoluzione in campioni più grandi di poche centinaia di micron”.
“Oltre queste dimensioni il tessuto biologico comincia a comportarsi come una «lente», andando a rompere l'allineamento del microscopio e rendendo, di conseguenza, le immagini sfocate", precisa Leonardo Sacconi, primo ricercatore del Cnr-Ino.
La nuova tecnica elaborata dai ricercatori, chiamata RAPID (acronimo di Rapid Autofocus via Pupil-split Image phase Detection) propone una nuova integrazione della microscopia a foglio di luce, capace di correggere in tempo reale i disallineamenti introdotti dal campione, consentendo di visualizzare e rappresentare interi cervelli di modelli murini con risoluzione subcellulare.
"Il nuovo metodo è ispirato ai sistemi di autofocus ottico presenti nelle macchine fotografiche reflex, dove un insieme di prismi e lenti trasforma la sfocatura dell'immagine in un movimento laterale, che permette di stabilizzare l'allineamento del microscopio in tempo reale”, aggiunge Sacconi.
RAPID è stato sviluppato nel Laboratorio europeo di spettroscopie non-lineari (Lens) dai ricercatori dell'Area di Biofotonica, di cui è responsabile Francesco Pavone, docente di Fisica della materia presso l’Università di Firenze. Alla ricerca hanno collaborato studiosi dell'Università di Glasgow e del Laboratorio europeo di biologia molecolare di Heidelberg (Germania). Lo studio è stato svolto all'interno della Flagship Europea Human Brain Project, di cui sono partner il Lens e il Cnr.
“La nuova tecnica avrà ricadute significative nelle neuroscienze, rendendo possibile un’analisi quantitativa dell’architettura del cervello a livello subcellulare”, conclude Silvestri.
L'alta risoluzione garantita da RAPID – che è anche oggetto di un brevetto internazionale di cui sono titolari Unifi, Lens e Cnr - ha permesso ai ricercatori di studiare su scala dell'intero cervello problematiche finora analizzate solo in piccole aree circoscritte. Si è indagata, ad esempio, la distribuzione spaziale di un particolare tipo di neuroni – che esprimono somatostatina – mostrando come queste cellule tendono ad organizzarsi in cluster spaziali, che si sospetta rendano più efficace la loro azione inibitoria.
Un’altra applicazione riguarda la microglia, un insieme di cellule con diverse funzioni (dalla risposta ad elementi patogeni alla regolazione della plasticità dei neuroni), la cui forma cambia a seconda del ruolo che svolgono. L'analisi della microglia effettuata con RAPID ha evidenziato differenze significative tra varie regioni del cervello, aprendo la strada a nuovi studi sul ruolo di questa popolazione cellulare.